| System | Series | Formation | Thickness
(feet) | Lithology | Water Supply | |-------------------|---------------------------|-------------------------------|--------------------------|---|---| | Quaternary | Recent | Alluvium | 5-30 | Sand, silt, clay, and gravel;
sediments are finer grained
away from the Bighorn
Mountains | Yields abundant supplies of
highly mineralized water
from saturated sand
gravel of perennial streams | | | | Colluvium | 0-66 | Silt, clay, and sand | The intermingled colluvial and alluvial deposits in the valley west of "the red wall", where irrigation recharge is available, probably would yield small quantities of highly mineralized water | | | Recent and
Pleistocene | Stream
terrace
deposits | 5-40 | Silt, sand, and clay underlain
by coarse sand and gravel.
Gravel consists of well-
rounded pebbles and cobbles
of quartzite, chert, and
igneous rocks | Yield moderate to large sup-
plies of water from irri-
gated localities. The water
is reported to be unsuitable
as a domestic supply | | Tertiary | Eocene | Wasatch | ¹ 2400 | Shale, bentonite, lignite, and sandstone layers having an overall drab brownish gray appearance in upper part. White sandstone and conglomerate in lower part | Small to moderate supplies of water available to wells at many localities. Local residents generally consider water to be of good quality, but report that water from some wells has a cathartic effect | | | Paleocene | Fort Union | ¹ 2500-3000 | consists of massive sandston | penetrating sandstone layers where recharge is available Local residents report that the water is slightly min- eralized but potable | | Cretaceous | Upper
Cretaceous | Lance | 13000 | sandstone is a typical cross-
bedded channel deposit | Yields small to moderate sup-
plies of water that locally
is used for domestic purpose | | | | Fox Hills sandstone | ¹ 600: | White "salt and pepper" sand-
stone; contains gray shale at
top and massive, cliff-formin
reddish-brown sandstone at
bottom | Probably yields moderate sup
plies of water from sand-
stone, but water-bearing
properties have not been
adequately tested | | | | Bearpaw
shale | ¹ 600s | Sandy carbonaceous shale that weathers buff and blue | Probably not water bearing | | | | Mesaverde | 6003 | Upper and middle parts consist of carbonaceous shale and | | | | | Cody shale | 3000-3300 | Medium- to dark-gray marine
shale; contains sandstone
lens in upper part | Moderate supplies of water ob-
tained from the sandstone
lens. Yields from the shale
are very small and the water
probably is highly mineral-
ized | | | | Frontier | 900± | Interbedded sandstone and shale at the top form the Wall Creek sandstone member, the first Wall Creek sand of drillers. Second Wall Creek sand of drillers consists of mediumto coarse-grained sandstone containing a black pebble conglomerate. Third Wall Creek sand of drillers consists of light-gray sandy shale underlain by dark-gray shale and bentonite; the bentonite lies at the base of the formation | | | | Lower
Cretaceous | Mowry shale | ² 1 46 | Dark brownish gray siliceous
shale that weathers to sil-
very gray; contains thin
beds of bentonite | Probably not water bearing at
depth. Where formation is e-
posed locally, fractured sur-
ficial zone contains shallow
ground water | | | | Thermopolis
shale | ² 244 | The upper part consists of gray shale and beds of bentonite. Lower part consists of thin-bedded black shale. The Muddy sandstone member is a well-indurated drab buff to brown medium-grained sandstone | Small supplies of water prob-
ably can be obtained locally
from the Muddy sandstone
member | | | | Cloverly | | Massive white to light-cream medium-grained sandstone containing lenses of small pebble conglomerate | Locally, large quantities may
be produced where jointing
due to diastrophism has oc-
cured | | urassic | Upper
Jurassic | Morrison | ² 20 5 | Lenticular beds of fine- to
medium-grained sandstone and
shale; weathers to variegated
colors | Probably yields small to mod-
erate supplies of water where
recharge is available. Salt
water was encountered in
drilling through this forma-
tion on the axis of the Kaycee
dome | | | Surassic | Sundance | ² 264 | Interbedded greenish-gray glau-
conitic shale and light-gray
and yellow sandstone | Yields small to moderate supplies of water. A sample of water collected from this formation was highly mineralized | | riassic | Lower
Triassic | Chugwater | ² 1023 | Bright-red fine- to medium-
grained sandstone, shale, and
siltstone containing gypsum
beds as much as 2 feet thick | The sandstone members of the formation probably would yield small quantities of water. However, the water is sealed off in all wells penetrating the Chugwater formation because it is considered unfit for use | | ermian | | Unnamed
rocks | 30-40 | I'wo buff to light-brown mottled
sandy limestone layers inter-
bedded with maroon- and li-
monite-colored clay. The low-
er limestone bed contains gray-
to black concretionary chert | Water-bearing properties un-
known | | ennsyl-
vanian | | Tensleep
sandstone | ² 407 | Massive, light-gray, white,
or pinkish-white fine- to
medium-grained crossbedded
sandstone | Yields abundant supplies of
water for domestic and stock
use. Artesian wells flow in
valley west of "the red wall" | ¹Wegemann (1917) ²Wyoming Geol. Assoc. (1949)